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Review of research under ARO program

This is the final technical report for ARO contract DAAL03-89-K-0038 in which we describe our
progress in the areas of Ill-V electronic device isolation and how they apply to the phenomena of
sidegating and backgating in GaAs based devices. The program evolved into a highly collaborative effort
between industry and university with several joint publications resulting. The sidegating/backgating
problem in field effect transistors (FETs) has essentially been eliminated by the development of GaAs and
other compounds grown at low temperatures by MBE.

Research included the developing techniques for synthesis of MBE material at low temperatures
(LT), establishment of electrical and optical characterization techniques specifically designed for the study
of such materials and the effects of electrical buffer layers made from the LT matenal on devices. We have
made advances in several areas including first realizations of LT GaAs by GSMBE, first realization of LT InP,
observation of variable range hopping conductivity in various LT III-V materials, determination of device
degradation effects of LT GaAs buffer layers and thermal stability of these materials. Additionally we (with
MOTOROLA) obtained an enhancement of mobility in two dimensional electron gas structures by
separately confining electrons and phonons.

We have initiated and developed several industrial interactions in the areas of low temperature
MBE material growth and characterization. The collaborations are with MOTOROLA Phoenix Corporate
Research Lab (PCRL), AT&T, MIT Lincoln Laboratory, U.C. Berkeley, Hughes Research Lab and
Universit~t Ulm.

Statement of problem studied
In GaAs grown at low temperatures (LT) by molecular beam epitaxy (MBE), the presence of

microscopic As precipitates and a high density of antisite defects dominate the conductivity, producing
electronic transport mainly by variable range hopping conduction. The resulting high resistivity (- 1010
acm) and subpicosecond carrier lifetimes have enabled the use of LT GaAs in FET buffer layers as well as
in ultra-fast optical switches. Electrical isolation between two field effect transistors (FETs) was increased
to the point where crosstalk (called sidegating or backgating) was virtually eliminated. In addition to the
technological impact of such a buffer layer was the question of what the specific conduction mechanisms
were in the material. Insight into this could reveal properties of nonstoichiometric binary semiconductor
compounds.

The application of MBE GaAs grown at temperatures below 3000C as an electrical buffer layer in
field effect transistors [11 has spurred an investigation of other materials grown at low temperatures. Other
material systems grown at low temperatures are AIGaAs [2], InAlAs [3], InP [4] and GaP 151. Several
applications of low temperature (LT) materials have subsequently been developed in electronic and
photonic devices. A review of LT materials and their electrical properties can be found in reference [6].

Considerable research has been carried out to determine the nature of the LTB's and the
mechanism by which they provide device isolation which is superior to that of semi-insulating GaAs. As
grown, these samples contain as much as 1% excess arsenic which forms AsGa antisites, As interstitials
and various complexes (7]. These "as grown" layers exhibit relatively large conductivities due to hopping
between a broad array of defect sites with concentrations as high as 2x1019 cm"3 . An anneal of
approximately 10 minutes at 6000C has the effect of converting these layers to very high resistivity (>108
Qcm). During the annealing process, the excess As in the LTB material "self-getters" forming arsenic
precipitates. These precipitates have been observed in concentrations of about 1x10 17 cm"3 and range
in size from 20-100 A [8]. However, the precipitate density is a strong function of growth temperature,
anneal time, and anneal temperature [7]. Concurrent with the formation of As precipitates is a reduction in
the defect density in the material.

There are two main theories on the origin of such a high resistivity and the observation of hopping
conductivity below room temperature. The first states that the well-characterized, high density of ASGa



and VGa related deep donors and acceptors is sufficient to compensate any carriers present in the
material [7,10]. The second states that metallic As precipitates act as spherical Schottky barriers [9] whose
overlapping space charge regions deplete the material of carriers and produce the observed high
resistivities. It was calculated that semi-insulating behavior should occur in n=5X10 1 7 cm 3 doped material
containing 30A diameter precipitates for precipitate densities above 2X1 016 cm-3 . This number varies as a
function of precipitate size and shallow impurity concentration. In the VRH regime the conductivity follows
the form [8]

In(a) - T-v (1)
with v=0.25. On the other hand Warren et aL [9] believe that the high resistivity of the material is due local
depletion around the As precipitates (ObAs=0.8 eV). By this view, the high density of As precipitates
results in a system of overlapping depletion regions. Conductivity then occurs by hopping between
pockets of undepleted material. This view also predicts the v=0.25 variable range hopping (VRH)
behavior which is commonly reported [11 ]. At this time there is evidence supporting both theories.

Summary of most important results

Scope of research and major research accomplishments:

a) First growth of LT GaAs by GSMBE
We have found that the electrical and optical properties of LTB's grown by conventional MBE and

GSMBE are very similar showing that LTB growth is also feasible with GSMBE. We have also found that
the exponent in the temperature dependence of In(a) is less than 0.25 for LTB's grown by both solid and
gas source MBE which indicates that a modified form of the variable range hopping mechanism (see figure
1) proposed by Mott may be dominating conduction in these layers. Whether the hopping is occurring
between deep levels or between normal conduction band electrons separated by depletion regions due
to the arsenic precipitates cannot be conclusively determined from these results. However, the
observations support the As precipitate model.
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Figure 1. Conductivity of LT GaAs grown by MBE and GSMBE versus T-0- 2 5 showing hopping
conductivity.

Growth of reproducible LT GaAs has enabled us to initiate collaborations with MOTOROLA PCRL,
Mary Gray (AT&T), S. Lilienthal-Weber (U.C. Berkeley), R. Metzger (Hughes Research Lab) and E. Kohn
(Univ. Ulm).

b) First growth of LT InP by GSMBE
We reported the first measurement of optical and electronic properties of InP grown at low

temperatures in a gas source MBE using dimeric phosphorus produced from cracked phosphine. The
conductivity is higher than the equivalent GaAs LT material and does not have the same temperature



dependence. The conditions under which growth occurs ie, substrate temperatures, V/ill ratios and
annealing was explored. The structural properties, temperature dependence of the conductivity (figure
2), deep level structure and the photoluminescence properties of the material were also investigated. The
major surprise in the InP system is that the resistivity of the LT InP is much lower (-10-2 flcm) than any
other LT material system. This may be due to a donor level that comes out of the InP conduction band in
the non-stoichiometric alloy.
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Figure 2. Electron concentration and resistivity of LT InP grown by GSMBE versus growth
temperature.

C) Effects and thermal stability of LT GaAs buffers on electronic properties of FETs
Electrical isolation is only one requirement for a buffer layer to be successful in electronic devices.

A high thermal stability which ensures that deep levels do not diffuse into the FET active region is
necessary. To investigate this, we performed a series of thermal stability studies using Deep Level
Transient Spectroscopy (DLTS) on FET structures with LT GaAs buffers.
Electron traps activation energies of 0.28eV, 0.45eV and 0.53eV were observed as well as hole traps

with activation energies of 0.38eV and 0.52eV. The trap concentrations are below 1015 cm-3 . Control
samples without LT buffers exhibited none of these electron or hole levels in detectable (<2X1 014 cm-3 )
quantities.

The stability of the same epitaxial layers was studied for various proximity anneal times. Samples
were annealed for 1 and 24 hours at 400"C in a nitrogen ambient and referenced them to an unannealed
sample. The distribution of trap levels is significantly altered by the annealing. The electrical DLTS (figure
3) shows an initial decrease in two of the levels and a slight increase in the highest temperature level after
1 hour. After 24 hours all of the electron traps increase in concentration and an entirely new level emerges
at 240K. The optical DLTS shows a steady decrease in the 320K hole trap concentration and an initial
decrease in the band of hole levels followed by an increase at 24 hours.



0.06 . .... .
as grown

0.04

0.02

-0.04 :Electrical DLTS

-0.06

-0.08 24 hr.

"_0 .1 r . . .. ! . . . . i . . . . . . , • . . . I , , , ,

50 100 150 200 250 300 350 400 450
Temperature (K)

igure 3. Electrical and optical DLTS of MESFET active layer grown on top of an LT GaAs buffer
layer after low temperature anneal cycles.

This shows that even during moderate temperature annealing the material properties of the epitaxial layers
are changing. The trend is that the hole trap concentration decreases while the electron trap
concentration increases with anneal time. The use of AlAs barrier layers has been successful in eliminating
some of the As outdiffusion problems.

d) Effects and thermal stability of LT GaAs buffers on optical properties of
quantum wells

Another probe that we used to observe deep level outdiffusion was photoluminescence on
quantum wells. We found that the optical properties of the QWs were very sensitive to the growth
condition of the LTBs, showing a gradual shift in peak energy, a reduction of the PL intensity and a
broadening of the OW linewidth as the Will ratio of the LTB was increased. The excess arsenic present
causes strain in the LTBs and hence in the QWs, appearing as a shift in the transition energy position. The
degraded linewidth and luminescence efficiency are a result of an out-diffusion of arsenic related traps
which introduces non-radiative recombination centers into the epitaxial layers during OW growth. The
linewidth and intensity degradation are most evident in the 100A wells which are closest to the LTBs.
LTBs grown using larger Will flux ratios containing larger quantities of arsenic show a more pronounced
change.

e) TEM of LT InP

A study of the structural properties of LT InP was performed in which the P-rich precipitates were
analyzed using high resolution electron microscopy (HREM), analytical electron microscopy (AEM) and
convergent beam electron diffraction (CBED) techniques.

Cross sectional transmission electron microscopy (TEM) was performed (near 110 zone axis
conditions ) on several samples which were prepared by mechanical grinding and low angle argon ion
milling. The microscope used was an Akashi 002B operating at 200keV. The epitaxial layers having a
thickness of 1.5grm exhibited a moderate to low dislocation density and thin twin planes on (1111
extending approximately 0.5 g±m from the LT layer surface. Throughout the layer, a density of
approximately 1X1 010 precipitates per square centimeter ranging in size from 1 ooA to 500A was
observed. These were analyzed by electron probe energy dispersive x-ray nanospectroscopy and found
to be phosphorus-rich. Moire fringes on the precipitates and microdiffraction showed them to be
crystalline. The precipitate density was a factor of ten less than that observed for As precipitates in LT
GaAs. The average small precipitate size is 250A which is more than twice the average size found for As
precipitates grown by As 2 [12].

Maps of stoichiometry in the epitaxial layer growth direction showed gradients in the P content of
approximately 3%. The strain induced by the excess P is responsible for the observed critical thickness for
dislocation formation effect that is also observed in LT GaAs.



f) Mobility enhancement In 2D structures by phonon confinement

We were successful in increasing the room temperature mobility of two dimensional carriers in
ultrathin quantum wells by constructing novel GaAs/AIGaAs epitaxial structures. While there is still some
debate about the mechanism of the increased mobility, it can be explained by a model in which the
electron and longitudinal-optical (LO) phonon modes are separately confined. LO phonon nodes were
placed inside the well by insertion of thin (2 monoiayer) AlAs barriers. The electron wavefunction was
essentially undisturbed by these barriers. Thus by separately confining the electrons and phonons, a
reduction of the electron-LO phonon scattering was achieved which increases the mobility. An example of
this effect is shown in figure 4 where the multiple quantum well structure has a higher mobility than the
control sample at temperatures above 60K. The increase in mobility at room temperature is 44%.
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Figure 4. Mobility versus temperature for a control sample and the MOW in which electron-phonon
scattering is reduced. The MQW sample has a higher mobility than the control at temperatures above 60K.

These results have started work by other groups in theoretically and experimentally studying the
effect. Theoretical work on this portion of the project was in close collaboration with Mike Stroscio of ARO.
This work could potentially be significant in high speed device applications.

Industrial collaborations:
MOTOROLA PCRL
Mike Stroscio, ARO
Mary Gray, AT&T
Zuzanna Lilienthal-Weber, U.C Berkeley
Bob Metzger, Hughes Research Lab
Erhard Kohn, Univerait~t Ulm
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